COURSE INTRODUCTION AND APPLICATION INFORMATION


Course Name
Principles Of Electromagnetics
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
AE 322
Spring
2
2
3
5
Prerequisites
 PHYS 102To succeed (To get a grade of at least DD)
Course Language
English
Course Type
Required
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives The main objective of this course is to introduce the fundamental concepts of classical electricity and magnetism with engineering applications. Coulomb’s law, electrostatic field, potential and gradient, electric flux and Gauss’s Law and divergence. Metallic conductors, Poisson’s and Laplace’s equations, capacitance, dielectric materials. Electrostatic energy and forces. Steady electric currents, Ohm’s Law, Kirchoff’s Laws, charge conservation and the continuity equation, Joule’s Law. BiotSavart’s law and the static magnetic field. Ampere’s Law and curl. Vector magnetic potential and magnetic dipole. Magnetic materials, forces and torques. Faraday’s Law, magnetic energy, displacement current and Maxwell’s equations.
Learning Outcomes The students who succeeded in this course;
  • Be able to define the fundamental principles of Coulomb’s law, electrostatic field,
  • Be able to identify the basics of waves and phasors,
  • Be able to describe the electric flux and Gauss’s Law and divergence,
  • Be able to solve problems dealing steady electric currents,
  • Be able to describe the significance of the essential concepts of Biot Savart’s law and the static magnetic field,
  • Be able to solve problems dealing with wave propagation on a transmission line,
  • Be able to explain the denotation and significance of Maxwell's equations in electromagnetics,
Course Description This course will cover basic topics; Coulomb’s law, electrostatic field, potential and gradient, electric flux and Gauss’s Law and divergence. Metallic conductors, Poisson’s and Laplace’s equations, capacitance, dielectric materials. Electrostatic energy and forces. Steady electric currents, Ohm’s Law, Kirchoff’s Laws, charge conservation and the continuity equation, Joule’s Law. BiotSavart’s law and the static magnetic field. Ampere’s Law and curl. Vector magnetic potential and magnetic dipole. Magnetic materials, forces and torques. Faraday’s Law, magnetic energy, displacement current and Maxwell’s equations.
Related Sustainable Development Goals

 



Course Category

Core Courses
X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Introduction: Waves and Phasors. Historical Timeline. EM in the Classical Era. EM in the Modern Era. Dimensions, Units, and Notation. The Nature of Electromagnetism. The Gravitational Force: A Useful Analogue Chapter 1. Sections 1.3.1. • Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
2 Electric Fields. Magnetic Fields. Static and Dynamic Fields. Traveling Waves. Sinusoidal Waves in a Lossless Medium. Sinusoidal Waves in a Lossy Medium. The Electromagnetic Spectrum. Review of Complex Numbers Chapter 1. Sections 1.3.2.; 1.6• Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
3 Vector Analysis. Basic Laws of Vector Algebra. Equality of Two Vectors. Vector Addition and Subtraction. Position and Distance Vectors. Vector Multiplication. Scalar and Vector Triple Products Chapter 3. Sections 3.1.5• Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316
4 Orthogonal Coordinate Systems. Cartesian Coordinates. Cylindrical Coordinates. Spherical Coordinates. Transformations between Coordinate Systems. Cartesian to Cylindrical Transformations. Cartesian to Spherical Transformations. Cylindrical to Spherical Transformations. Distance between Two Points Chapter 3. Sections 32, 33.. • Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
5 Gradient, Divergence, Laplace İşlevselleri, Stoke Kuramı / Gradient. Gradient of a Scalar Field. Gradient Operator in Cylindrical and Spherical Coordinates. Properties of the Gradient Operator. Divergence of a Vector Field. Curl of a Vector Field. Vector Identities Involving the Curl. Stokes’s Theorem. Laplacian Operator Chapter 3. Sections 3.4; 3.7.. • Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
6 Electrostatics. Maxwell’s Equations. Charge and Current Distributions. Charge Densities. Current Density. Coulomb’s Law. Electric Field due to Multiple Point Charges. Electric Field due to a Charge Distribution. Electric Potential as a Function of Electric Field. Electric Potential Due to Point Charges Chapter 4. Sections 4.1., 4.5.2 . • Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
7 Electric Potential, Conductors. Electric Potential Due to Continuous Distributions. Electric Field as a Function of Electric Potential. Poisson’s Equation. Conductors. Drift Velocity. Resistance. Joule’s Law. Resistive Sensors. Chapter 4. Sections 45.346.3. • Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
8 Dielektric, Boundary Value/ Electric Potential, Conductors. Dielectrics. Polarization Field. Dielectric Breakdown. Electric Boundary Conditions. DielectricConductor Boundary. Conductor Boundary. Capacitance. Electrostatic Potential Energy Chapter 4. Sections 4.7 • Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
9 Magnetostatics. Magnetic Forces and Torques. Magnetic Force on a CurrentCarrying Conductor. Magnetic Torque on a CurrentCarrying Loop. The Biot—Savart Law. Magnetic Field due to Surface and Volume Current Distributions Chapter 5. Sections 5.1, 5.2. 1. • Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
10 Magnetic Field of a Magnetic Dipole. Magnetic Force Between Two Parallel Conductors. Maxwell’s Magnetostatic Equations. Gauss’s Law for Magnetism Chapter 5. Sections 5.1, 5.3.1. • Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
11 Ampere’s Law. Vector Magnetic Potential. Magnetic Properties of Materials. Electron Orbital and Spin Magnetic Moments Chapter 5. Sections 5.3.2. , 5.5.1• Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
12 Magnetic Permeability. Magnetic Hysteresis of Ferromagnetic Materials. Magnetic Boundary Conditions. Inductance Chapter 5. Sections 5.5. 2 • Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
13 Magnetic Field in a Solenoid. SelfInductance. Mutual Inductance. Magnetic Energy. Inductive Sensors Chapter 5. Sections 5.7. 1. , 5.8• Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
14 Maxwell’s Equations for TimeVarying Fields. Faraday’s Law. Stationary Loop in a TimeVarying Magnetic Field.The Ideal Transformer. Moving Conductor in a Static Magnetic Field Chapter 6. Sections 6.1.1. , 6.4 • Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
15 Electromagnetic Potentials Chapter 6. Sections 6.5. 1. , 6.8 • Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311
16 Review & Final Examination
Course Notes/Textbooks

Fundamentals of Applied Electromagnetics, 6/E, Ulaby, Michielssen & Ravaioli ©2010, Prentice Hall, Published: 02/25/2010, ISBN10: 0132139316 | ISBN13: 9780132139311

Suggested Readings/Materials

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
5
15
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
5
15
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterm
1
30
Final Exam
1
40
Total

Weighting of Semester Activities on the Final Grade
11
60
Weighting of End-of-Semester Activities on the Final Grade
1
40
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
2
Study Hours Out of Class
16
4
64
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
5
3
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterms
1
3
Final Exams
1
4
    Total
150

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To have theoretical and practical knowledge that have been acquired in the area of Mathematics, Natural Sciences, and Aerospace Engineering.

2

To be able to assess, analyze and solve problems by using the scientific methods in the area of Aerospace Engineering.

X
3

To be able to design a complex system, process or product under realistic limitations and requirements by using modern design techniques.

X
4

To be able to develop, select and use novel tools and techniques required in the area of Aerospace Engineering.

X
5

To be able to design and conduct experiments, gather data, analyze and interpret results.

6

To be able to develop communication skills, ad working ability in multidisciplinary teams.

7

To be able to communicate effectively in verbal and written Turkish; writing and understanding reports, preparing design and production reports, making effective presentations, giving and receiving clear and understandable instructions.

8

To have knowledge about global and social impact of engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of Aerospace Engineering solutions.

9

To be aware of professional and ethical responsibility; to have knowledge about standards utilized in engineering applications.

10

To have knowledge about industrial practices such as project management, risk management, and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development.

11

To be able to collect data in the area of Aerospace Engineering, and to be able to communicate with colleagues in a foreign language (‘‘European Language Portfolio Global Scale’’, Level B1).

12

To be able to speak a second foreign language at a medium level of fluency efficiently.

13

To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Aerospace Engineering.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest